Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2.

Identifieur interne : 002177 ( Main/Exploration ); précédent : 002176; suivant : 002178

Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2.

Auteurs : Milan Osusky [Canada] ; Lubica Osuska ; William Kay ; Santosh Misra

Source :

RBID : pubmed:15947906

Descripteurs français

English descriptors

Abstract

Dermaseptin B1 is a potent cationic antimicrobial peptide found in skin secretions of the arboreal frog Phyllomedusa bicolor. A synthetic derivative of dermaseptin B1, MsrA2 (N-Met-dermaseptin B1), elicited strong antimicrobial activities against various phytopathogenic fungi and bacteria in vitro. To assess its potential for plant protection, MsrA2 was expressed at low levels (1-5 microg/g of fresh tissue) in the transgenic potato (Solanum tuberosum L.) cv. Desiree. Stringent challenges of these transgenic potato plants with a variety of highly virulent fungal phytopathogens--Alternaria, Cercospora, Fusarium, Phytophthora, Pythium, Rhizoctonia and Verticillium species--and with the bacterial pathogen Erwinia carotovora demonstrated that the plants had an unusually broad-spectrum and powerful resistance to infection. MsrA2 profoundly protected both plants and tubers from diseases such as late blight, dry rot and pink rot and markedly extended the storage life of tubers. Due to these properties in planta, MsrA2 is proposed as an ideal antimicrobial peptide candidate to significantly increase resistance to phytopathogens and improve quality in a variety of crops worldwide with the potential to obviate fungicides and facilitate storage under difficult conditions.

DOI: 10.1007/s00122-005-2056-y
PubMed: 15947906


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2.</title>
<author>
<name sortKey="Osusky, Milan" sort="Osusky, Milan" uniqKey="Osusky M" first="Milan" last="Osusky">Milan Osusky</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6</wicri:regionArea>
<wicri:noRegion>British Columbia V8W 3P6</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Osuska, Lubica" sort="Osuska, Lubica" uniqKey="Osuska L" first="Lubica" last="Osuska">Lubica Osuska</name>
</author>
<author>
<name sortKey="Kay, William" sort="Kay, William" uniqKey="Kay W" first="William" last="Kay">William Kay</name>
</author>
<author>
<name sortKey="Misra, Santosh" sort="Misra, Santosh" uniqKey="Misra S" first="Santosh" last="Misra">Santosh Misra</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15947906</idno>
<idno type="pmid">15947906</idno>
<idno type="doi">10.1007/s00122-005-2056-y</idno>
<idno type="wicri:Area/Main/Corpus">002261</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002261</idno>
<idno type="wicri:Area/Main/Curation">002261</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002261</idno>
<idno type="wicri:Area/Main/Exploration">002261</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2.</title>
<author>
<name sortKey="Osusky, Milan" sort="Osusky, Milan" uniqKey="Osusky M" first="Milan" last="Osusky">Milan Osusky</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6</wicri:regionArea>
<wicri:noRegion>British Columbia V8W 3P6</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Osuska, Lubica" sort="Osuska, Lubica" uniqKey="Osuska L" first="Lubica" last="Osuska">Lubica Osuska</name>
</author>
<author>
<name sortKey="Kay, William" sort="Kay, William" uniqKey="Kay W" first="William" last="Kay">William Kay</name>
</author>
<author>
<name sortKey="Misra, Santosh" sort="Misra, Santosh" uniqKey="Misra S" first="Santosh" last="Misra">Santosh Misra</name>
</author>
</analytic>
<series>
<title level="j">TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</title>
<idno type="ISSN">0040-5752</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amphibian Proteins (genetics)</term>
<term>Amphibian Proteins (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Antimicrobial Cationic Peptides (genetics)</term>
<term>Antimicrobial Cationic Peptides (metabolism)</term>
<term>Anura (MeSH)</term>
<term>Blotting, Northern (MeSH)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Fungi (physiology)</term>
<term>Gene Transfer Techniques (MeSH)</term>
<term>Immunity, Innate (genetics)</term>
<term>Oligonucleotides (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Solanum tuberosum (genetics)</term>
<term>Solanum tuberosum (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Anura (MeSH)</term>
<term>Champignons (physiologie)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Immunité innée (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Oligonucléotides (MeSH)</term>
<term>Peptides antimicrobiens cationiques (génétique)</term>
<term>Peptides antimicrobiens cationiques (métabolisme)</term>
<term>Protéines d'amphibien (génétique)</term>
<term>Protéines d'amphibien (métabolisme)</term>
<term>Solanum tuberosum (génétique)</term>
<term>Solanum tuberosum (métabolisme)</term>
<term>Technique de Northern (MeSH)</term>
<term>Techniques de transfert de gènes (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Amphibian Proteins</term>
<term>Antimicrobial Cationic Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amphibian Proteins</term>
<term>Antimicrobial Cationic Peptides</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Immunity, Innate</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Immunité innée</term>
<term>Peptides antimicrobiens cationiques</term>
<term>Protéines d'amphibien</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Peptides antimicrobiens cationiques</term>
<term>Protéines d'amphibien</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Champignons</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Anura</term>
<term>Blotting, Northern</term>
<term>Cloning, Molecular</term>
<term>Gene Transfer Techniques</term>
<term>Oligonucleotides</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Anura</term>
<term>Clonage moléculaire</term>
<term>Oligonucléotides</term>
<term>Technique de Northern</term>
<term>Techniques de transfert de gènes</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dermaseptin B1 is a potent cationic antimicrobial peptide found in skin secretions of the arboreal frog Phyllomedusa bicolor. A synthetic derivative of dermaseptin B1, MsrA2 (N-Met-dermaseptin B1), elicited strong antimicrobial activities against various phytopathogenic fungi and bacteria in vitro. To assess its potential for plant protection, MsrA2 was expressed at low levels (1-5 microg/g of fresh tissue) in the transgenic potato (Solanum tuberosum L.) cv. Desiree. Stringent challenges of these transgenic potato plants with a variety of highly virulent fungal phytopathogens--Alternaria, Cercospora, Fusarium, Phytophthora, Pythium, Rhizoctonia and Verticillium species--and with the bacterial pathogen Erwinia carotovora demonstrated that the plants had an unusually broad-spectrum and powerful resistance to infection. MsrA2 profoundly protected both plants and tubers from diseases such as late blight, dry rot and pink rot and markedly extended the storage life of tubers. Due to these properties in planta, MsrA2 is proposed as an ideal antimicrobial peptide candidate to significantly increase resistance to phytopathogens and improve quality in a variety of crops worldwide with the potential to obviate fungicides and facilitate storage under difficult conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15947906</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>02</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0040-5752</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>111</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2005</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</Title>
<ISOAbbreviation>Theor Appl Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2.</ArticleTitle>
<Pagination>
<MedlinePgn>711-22</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Dermaseptin B1 is a potent cationic antimicrobial peptide found in skin secretions of the arboreal frog Phyllomedusa bicolor. A synthetic derivative of dermaseptin B1, MsrA2 (N-Met-dermaseptin B1), elicited strong antimicrobial activities against various phytopathogenic fungi and bacteria in vitro. To assess its potential for plant protection, MsrA2 was expressed at low levels (1-5 microg/g of fresh tissue) in the transgenic potato (Solanum tuberosum L.) cv. Desiree. Stringent challenges of these transgenic potato plants with a variety of highly virulent fungal phytopathogens--Alternaria, Cercospora, Fusarium, Phytophthora, Pythium, Rhizoctonia and Verticillium species--and with the bacterial pathogen Erwinia carotovora demonstrated that the plants had an unusually broad-spectrum and powerful resistance to infection. MsrA2 profoundly protected both plants and tubers from diseases such as late blight, dry rot and pink rot and markedly extended the storage life of tubers. Due to these properties in planta, MsrA2 is proposed as an ideal antimicrobial peptide candidate to significantly increase resistance to phytopathogens and improve quality in a variety of crops worldwide with the potential to obviate fungicides and facilitate storage under difficult conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Osusky</LastName>
<ForeName>Milan</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Osuska</LastName>
<ForeName>Lubica</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kay</LastName>
<ForeName>William</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Misra</LastName>
<ForeName>Santosh</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>06</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Theor Appl Genet</MedlineTA>
<NlmUniqueID>0145600</NlmUniqueID>
<ISSNLinking>0040-5752</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029845">Amphibian Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D023181">Antimicrobial Cationic Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>136212-91-4</RegistryNumber>
<NameOfSubstance UI="C070905">dermaseptin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029845" MajorTopicYN="N">Amphibian Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023181" MajorTopicYN="N">Antimicrobial Cationic Peptides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001001" MajorTopicYN="N">Anura</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015152" MajorTopicYN="N">Blotting, Northern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018014" MajorTopicYN="N">Gene Transfer Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009841" MajorTopicYN="N">Oligonucleotides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>11</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>04</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15947906</ArticleId>
<ArticleId IdType="doi">10.1007/s00122-005-2056-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12466-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8618922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):373-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11114160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1998 Sep;42(9):2160-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9736528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Jan 21;269(3):1934-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8294443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 Jan 15;219(1-2):145-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8306981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1991;29:421-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18479197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Nov;18(11):1162-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Oct 13;290(5490):279-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11183373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Mar;6(3):89-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11239592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 May 5;266(13):8184-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2022636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Mycol. 1998 Oct;36(5):291-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10075498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 1995;37:135-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8540420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Dec;18(12):1307-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11101813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2002 Mar;46(3):689-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11850249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Feb 28;415(6875):977-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2002 Feb;66(2):229-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11782932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 1999 Oct;2(5):494-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Feb;216(4):587-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12569400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2000 Sep;44(9):2442-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10952593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1998 Apr;79 ( Pt 4):731-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9568968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2000 Jan;44(1):68-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10602725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jan 16;98 (2):741-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11209069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jan 24;415(6870):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11807545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1978 Jul 11;163(2):181-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">355847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Feb 15;370(Pt 1):121-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12435273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2000 Sep;8(9):402-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10989307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Mar;119(3):935-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1992 Dec;59(2):414-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1493807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 Mar 9;1396(2):228-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9540838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Apr;9(4):509-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9144959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Apr;3(2):147-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Sep 10;30(36):8824-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1909573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2002 May;46(5):1218-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11959548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8856-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10922046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Nov;127(3):852-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11706168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2002 Apr;46(4):1059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11897590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1988 Nov;76(5):767-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24232356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pest Manag Sci. 2002 Sep;58(9):944-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12233186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 May 31;33(21):6642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8204601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12628-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12235362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Apr;62(7):1073-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12591259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Peptides. 2003 Nov;24(11):1815-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15019214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Nov;105(6-7):809-814</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1996;198(1):70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8580772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2000 Apr;11(2):120-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10753764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2003 May;270(9):2068-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12709067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Dec 16;269(50):31635-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7989335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2001 Feb;13(1):55-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11154918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Aug;13(8):860-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10939257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2004 Apr;13(2):181-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15198205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Peptides. 1997;18(2):177-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9149288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Oct 27;484(1):7-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11056212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Sep 13;33(36):10951-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8086412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Cell Biol. 1998;76(2-3):235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9923692</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Kay, William" sort="Kay, William" uniqKey="Kay W" first="William" last="Kay">William Kay</name>
<name sortKey="Misra, Santosh" sort="Misra, Santosh" uniqKey="Misra S" first="Santosh" last="Misra">Santosh Misra</name>
<name sortKey="Osuska, Lubica" sort="Osuska, Lubica" uniqKey="Osuska L" first="Lubica" last="Osuska">Lubica Osuska</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Osusky, Milan" sort="Osusky, Milan" uniqKey="Osusky M" first="Milan" last="Osusky">Milan Osusky</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002177 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002177 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15947906
   |texte=   Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15947906" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024